133 research outputs found

    Separation and Concentration in Deep Networks

    Get PDF
    Numerical experiments demonstrate that deep neural network classifiers progressively separate class distributions around their mean, achieving linear separability on the training set, and increasing the Fisher discriminant ratio. We explain this mechanism with two types of operators. We prove that a rectifier without biases applied to sign-invariant tight frames can separate class means and increase Fisher ratios. On the opposite, a soft-thresholding on tight frames can reduce within-class variabilities while preserving class means. Variance reduction bounds are proved for Gaussian mixture models. For image classification, we show that separation of class means can be achieved with rectified wavelet tight frames that are not learned. It defines a scattering transform. Learning 1×11 \times 1 convolutional tight frames along scattering channels and applying a soft-thresholding reduces within-class variabilities. The resulting scattering network reaches the classification accuracy of ResNet-18 on CIFAR-10 and ImageNet, with fewer layers and no learned biases

    Deep Network Classification by Scattering and Homotopy Dictionary Learning

    Get PDF
    We introduce a sparse scattering deep convolutional neural network, which provides a simple model to analyze properties of deep representation learning for classification. Learning a single dictionary matrix with a classifier yields a higher classification accuracy than AlexNet over the ImageNet 2012 dataset. The network first applies a scattering transform that linearizes variabilities due to geometric transformations such as translations and small deformations. A sparse 1\ell^1 dictionary coding reduces intra-class variability while preserving class separation through projections over unions of linear spaces. It is implemented in a deep convolutional network with a homotopy algorithm having an exponential convergence. A convergence proof is given in a general framework that includes ALISTA. Classification results are analyzed on ImageNet

    Deep Network Classification by Scattering and Homotopy Dictionary Learning

    Get PDF
    International audienceWe introduce a sparse scattering deep convolutional neural network, which provides a simple model to analyze properties of deep representation learning for classification. Learning a single dictionary matrix with a classifier yields a higher classification accuracy than AlexNet over the ImageNet 2012 dataset. The network first applies a scattering transform that linearizes variabilities due to geometric transformations such as translations and small deformations. A sparse l1 dictionary coding reduces intra-class variability while preserving class separation through projections over unions of linear spaces. It is implemented in a deep convolutional network with a homotopy algorithm having an exponential convergence. A convergence proof is given in a general framework that includes ALISTA. Classification results are analyzed on ImageNet

    Kymatio: Scattering Transforms in Python

    Full text link
    The wavelet scattering transform is an invariant signal representation suitable for many signal processing and machine learning applications. We present the Kymatio software package, an easy-to-use, high-performance Python implementation of the scattering transform in 1D, 2D, and 3D that is compatible with modern deep learning frameworks. All transforms may be executed on a GPU (in addition to CPU), offering a considerable speed up over CPU implementations. The package also has a small memory footprint, resulting inefficient memory usage. The source code, documentation, and examples are available undera BSD license at https://www.kymat.io

    Identifying transient and variable sources in radio images

    Get PDF
    With the arrival of a number of wide-field snapshot image-plane radio transient surveys, there will be a huge influx of images in the coming years making it impossible to manually analyse the datasets. Automated pipelines to process the information stored in the images are being developed, such as the LOFAR Transients Pipeline, outputting light curves and various transient parameters. These pipelines have a number of tuneable parameters that require training to meet the survey requirements. This paper utilises both observed and simulated datasets to demonstrate different machine learning strategies that can be used to train these parameters. We use a simple anomaly detection algorithm and a penalised logistic regression algorithm. The datasets used are from LOFAR observations and we process the data using the LOFAR Transients Pipeline; however the strategies developed are applicable to any light curve datasets at different frequencies and can be adapted to different automated pipelines. These machine learning strategies are publicly available as PYTHON tools that can be downloaded and adapted to different datasets (https://github.com/AntoniaR/TraP_ML_tools)

    The LOFAR Transients Pipeline

    Get PDF
    Current and future astronomical survey facilities provide a remarkably rich opportunity for transient astronomy, combining unprecedented fields of view with high sensitivity and the ability to access previously unexplored wavelength regimes. This is particularly true of LOFAR, a recently-commissioned, low-frequency radio interferometer, based in the Netherlands and with stations across Europe. The identification of and response to transients is one of LOFAR's key science goals. However, the large data volumes which LOFAR produces, combined with the scientific requirement for rapid response, make automation essential. To support this, we have developed the LOFAR Transients Pipeline, or TraP. The TraP ingests multi-frequency image data from LOFAR or other instruments and searches it for transients and variables, providing automatic alerts of significant detections and populating a lightcurve database for further analysis by astronomers. Here, we discuss the scientific goals of the TraP and how it has been designed to meet them. We describe its implementation, including both the algorithms adopted to maximize performance as well as the development methodology used to ensure it is robust and reliable, particularly in the presence of artefacts typical of radio astronomy imaging. Finally, we report on a series of tests of the pipeline carried out using simulated LOFAR observations with a known population of transients.Comment: 30 pages, 11 figures; Accepted for publication in Astronomy & Computing; Code at https://github.com/transientskp/tk

    Stoics against stoics in Cudworth's "A Treatise of Freewill"

    Get PDF
    In his 'A Treatise of Freewill', Ralph Cudworth argues against Stoic determinism by drawing on what he takes to be other concepts found in Stoicism, notably the claim that some things are ‘up to us’ and that these things are the product of our choice. These concepts are central to the late Stoic Epictetus and it appears at first glance as if Cudworth is opposing late Stoic voluntarism against early Stoic determinism. This paper argues that in fact, despite his claim to be drawing on Stoic doctrine, Cudworth uses these terms with a meaning first articulated only later, by the Peripatetic commentator Alexander of Aphrodisias

    The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies

    Get PDF
    The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80–300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ~3-km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper, the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised
    corecore